12.3 & 12.4

Properties of Chords & Inscribed Angles

Review - Inscribed Angles

Review - Central Angles

Intercepted Arcs

Investigation: Chord Properties 1

What's the relationship between congruent chords and the central angles formed using their endpoints?

If two chords in a circle are congruent, then they determine

Investigation: Chord Properties 2

What's the relationship between congruent chords and the arcs formed between their endpoints (intercepted arcs)?

If two chords are congruent, then their intercepted arcs are

Investigation: Chord Properties 3

What's the relationship between congruent chords and their distance from the center?

Two congruent chords in a circle ______

Investigation: Chord Properties 4

What does a perpendicular from the center of a circle do to an intersecting chord?

The perpendicular from the center of a circle to a chord

Investigation: Chord Properties 4

If a segment is coming from the center of a circle and bisects a chord, what relationship do they have with each other?

A segment coming from the center and bisects a chord

1)
$$w = -?-$$

2)
$$v = -?-$$

3)
$$Z = -?-$$

4)
$$AB = CD$$

 $PO = 8 \text{ cm}$
 $OQ = -?-$

5) AB = 6 cm OP = 4 cm CD = 8 cm OQ = 3 cm BD = 6 cm What is the perimeter of OPBDQ?

Relationship between central angles and intercepted arcs

The measure of a central angle and the arc made from its endpoints (intercepted arc) are the ______.

Relationship between inscribed angles and central angles

Investigation: Inscribed Angles 1

The measure of an _____ angle is half the measure of the ____ angle that shares the same arc

Relationship between inscribed angles that share the same arc.

Investigation: Inscribed Angles 2

Inscribed angles that share the same arc are

Observations of a right inscribed angle

Investigation: Inscribed Angles 3

Angles inscribed in a semicircle are _____

Quadrilaterals inscribed in a

Circle...

Investigation: Inscribed Angles 4

Cyclic Quadrilateral Theorem

_____ angles in a cyclic

quadilateral are ________.

Parallel Lines Intersecting a

Parallel lines intercept _____ arcs on a circle.

Inscribed Angle Properties

6)
$$a = -?-$$

7)
$$b = -?-$$

Inscribed Angle Properties

8)
$$c = -?-$$

9)
$$d = -?-$$

 $e = -?-$

Inscribed Angle Properties

11)

DOWN is a kite.

$$y = -?-$$